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Abstract—Approximate message passing (AMP) is a scalable,
iterative approach to signal recovery. For structured random
measurement ensembles, including independent and identically
distributed (i.i.d.) Gaussian and rotationally-invariant matrices,
the performance of AMP can be characterized by a scalar
recursion called state evolution (SE). The pseudo-Lipschitz (poly-
nomial) smoothness is conventionally assumed. In this work, we
extend the SE for AMP to a new class of measurement matrices
with independent (not necessarily identically distributed) entries.
We also extend it to a general class of functions, called controlled
functions which are not constrained by the polynomial smooth-
ness; unlike the pseudo-Lipschitz function that has polynomial
smoothness, the controlled function grows exponentially. The
lack of structure in the assumed measurement ensembles is
addressed by leveraging Lindeberg-Feller. The lack of smoothness
of the assumed controlled function is addressed by a proposed
conditioning technique leveraging the empirical statistics of the
AMP instances. The resultants grant the use of the SE to a
broader class of measurement ensembles and a new class of
functions.

Index Terms—Approximate message passing (AMP), state
evolution (SE), controlled function, and random matrix theory.

I. INTRODUCTION

The problem of signal recovery from a linear observation1

y = Ax0 +w (1)

appears in various fields [1]–[3], where y ∈ Rn×1, A ∈ Rn×N

is a given measurement matrix, x0 ∈ RN×1 is the signal to be
recovered, and w ∈ Rn×1 is an additive noise. Of particular
interest is the case when A is overcomplete (n ≪ N ).
However, the computational cost to solve this problem is
typically prohibitive when the dimensions n and N are large.

Message passing (MP) can be applied to handle the large-
dimensionality of the problem. Conventionally, sparsity is
essential for MP to approach a fundamental performance
limit [4]. Recently, the approximate message-passing (AMP)
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1A bold lower case letter a is a column vector and a bold upper case letter
A is a matrix. ∥a∥p, A∗, A−1, and Aij denote the p-norm of a, transpose of
A, inverse of A, and ith row and jth column entry of A, respectively. A(N)
and a(N), respectively, are the matrix and vector indexed by N . N (ν, σ2)

denotes the Gaussian distribution with mean ν and variance σ2. The d
=⇒

and a.s.
= denote the convergence in distribution and equivalence in an almost

sure sense, respectively. ⟨u,v⟩ = 1
n

∑n
i=1 uivi defines the normalized inner

product of u,v ∈ Rn×1. EZ [·] denotes the expectation with respect to the
random variable Z. 0n denotes the n× 1 all-zero vector.

algorithm has received significant attention [5]–[7] because it
performs surprisingly well in systems that are not sparse.

The remarkable features of AMP have inspired a wide range
of applications [8]–[23]. Despite its widespread applicability,
the AMP algorithm suffers from instability issues [24]–[26].
The instability is closely related to the underlying structure
of the random measurement matrix A. Understanding the
dynamics of AMP for various classes of random measurement
ensembles has been an outstanding open problem.

A rigorous proof of state evolution (SE) was first established
by Bayati and Montanari [27]. As N tends to infinity while
ρ = n

N is kept constant, Bayati and Montanari [27] asymptot-
ically characterized the evolution of the mean squared error
(state) of AMP for the A with independent and identically
distributed (i.i.d.) Gaussian entries. Rush et. al [28] showed a
concentration bound of the SE in the finite n and N regime;
the probability of deviation decays exponentially with n.

The validity of SE in [27] has inspired extensive research
efforts on extending it to different measurement ensembles
such as sub-Gaussian A by Bayati et. al [29] and Chen
et. al [30], right-orthogonally-invariant A by Rangan et. al
[31], rotationally-invariant A by Fan [32], unitarily-invariant
A by Takeuchi [33], and semi-random A by Dudeja et. al
[34]. A belief is that the SE for AMP might hold for an
even boarder class of matrices. The key to analyzing the
SE for AMP is the conditioning technique [27], [35]. This
means that the current instance of the AMP algorithm is
modeled as a linear combination of the previous instances that
are Gaussian, plus a deviation term (non-Gaussian). A key
step to the stability is leveraging the polynomial smoothness
of the pseudo-Lipschitz function2 and establishing that the
contribution from the deviation term decays as n and N grow.

Recently, the controlled function has been introduced to
analyze the nonlinear behavior of neural networks in machine
learning [36], [37]. Unlike the pseudo-Lipschitz function, the
controlled function incorporates exponential growth into its
model. Hence, the pseudo-Lipschitz function can be viewed
as a special case of the controlled function.

This work is motivated by the experimental observations [5],
[25] that there is ample room for extending the establishment
of SE for AMP to different classes of measurement ensembles

2The polynomial smoothness of the pseudo-Lipschitz function is defined in
Appendix A



and functions. The major contributions of this work are
summarized below.

Independent entries (this work)
I.i.d. Gaussian
Rotationally-invariant

I RI∩R

Fig. 1. Two categories of random measurement ensembles

• We extend the SE analysis for AMP to the measurement
ensembles in I in Fig. 1, where I is the set of matrices
with independent but not necessarily identically distributed
entries. Note that the SE analysis in the prior works [27],
[28], [31]–[33] focused on the set R in Fig. 1, where R
is the set of rotationally-invariant matrices, including the
i.i.d. Gaussian ensembles. The set I distinguishes it from
the set R because it is far more incoherent than R. This
constitutes a major challenge in establishing the SE of the
assumed ensembles. In our work, the lack of structure of
the A ∈ I is addressed by leveraging and extending the
Lindeberg-Feller theorem.

• In contrast to the prior works [27]–[33] that relied on the
pseudo-Lipschitz smoothness to establish SE, we generalize
the SE analysis to the controlled function. The lack of
smoothness of the latter is addressed by exploiting the
measurability against Gaussian measure in conjunction with
the conditioning technique, based on empirical statistics.

A part of our results is a theoretical justification for the
conjecture made in [27] about the validity of the SE for AMP
with i.i.d. non-Gaussian measurement ensembles.

II. PREMILINARIES

First, the concept of empirical statistics is developed. Next,
the frequently used statistical lemmas are presented.
A. Empirical Statistics

The empirical law of a random vector constructed here is
exploited to propose a conditioning technique in the following
sections. We start by defining probability distributions.

Suppose P(R) is the collection of all probability dis-
tributions on R with sample space Ω. A random variable
X : Ω → R has the distribution µ ∈ P(R) denoted by X ∼ µ,
if Pr(X ∈ S) = µ(S), for a set S ⊆ Ω. For a function
f : R → R, we denote, if it exists, µf =

∫
R f(x)µ(dx).

The first moment and second moment of the distribution µ are
then given by taking f(X) = X and f(X) = X2, respectively,
denoted as E[X] = ⟨µ⟩ and E[X2] = ⟨µ2⟩. The variance of the
distribution µ is denoted by ⟨µ⟩2, which equals to the variance
of X . Given these definitions, we define empirical distribution
of deterministic vectors as follows.

1) Empirical Distribution of a Deterministic Vector: For a
deterministic vector v ∈ Rn×1, the empirical sample mean,
sample second moment, and sample variance are defined as
⟨v⟩= 1

n

∑n
i=1 vi,⟨v

2⟩= 1
n

∑n
i=1 v

2
i , and ⟨v⟩2= 1

n

∑n
i=1(vi−⟨v⟩)2,

respectively. We let δ{a} ∈ P(R) be the Dirac distribution
with mass on {a} and δ{a}f ≜ f(a) for all function f :
R → R. The empirical distribution of v is then defined by

v̂= 1
n

∑n
i=1 δ{vi}. For the empirical distribution v̂, the first

moment ⟨v̂⟩= v̂x= 1
n

∑n
i=1 δ{vi}x=

1
n

∑n
i=1 vi = ⟨v⟩, the

second moment ⟨v̂2⟩ = v̂x2 = 1
n

∑n
i=1 v

2
i = ⟨v2⟩, and the

variance ⟨v̂⟩2 = 1
n

∑n
i=1(vi − ⟨v̂⟩)2 = ⟨v⟩2. We are now

ready to present the empirical law of a random vector.
2) Empirical Law of a Random Vector: For a random vector

v : Ω → Rn×1, v(ω) ∈ Rn×1 is a random sample of the
empirical distribution v̂(ω) ∈ P(R). The empirical law of the
random vector v is then defined by v̂f = E[v̂(ω)f ], for a
measurable function f . Suppose that vi ∼ µi ∈ P(R), ∀i.
Then, we have the empirical law v̂ = 1

n

∑n
i=1 µi. Moreover,

the first moment ⟨v̂⟩ = 1
n

∑n
i=1⟨µi⟩ and the second moment

⟨v̂2⟩ = 1
n

∑n
i=1⟨µ2

i ⟩.
B. Frequently Used Statistics Results

Lemma 1. (Lindeberg-Feller [38]) For n ≥ 1, we
let {Xn,m : 1 ≤ m ≤ n} be an independent tri-
angular array with E[Xn,m] = 0, ∀m. Suppose i)
limn→∞

∑n
m=1 E[X2

n,m] = σ2
x > 0; ii) (Lindeberg condition)

for all ϵ > 0, limn→∞
∑n

m=1 E
[
X2

n,m; |Xn,m| > ϵ
]
= 0. Then∑n

m=1Xn,m
d
=⇒ N (0, σ2

x) as n→ ∞.

We propose a sufficient condition for the Lindeberg condition.

Proposition 1. If there exists α > 0 such that supmE[X2+2α
n,m ] =

o(n−1), the Lindeberg condition in Lemma 1 holds.

Proof. See Appendix B.

Incorporating Proposition 1 into Lemma 1 leads to a variant
of Lindeberg-Feller that we use for our analysis.

Proposition 2. For n ≥ 1, we let {Xn,m : 1 ≤ m ≤ n} be
independent random triangular array with E[Xn,m] = 0,
∀m. Suppose i) limn→∞

∑n
m=1 E[X2

n,m] = σ2
x < ∞; ii)

supm E
[
X2+2α

n,m

]
= o(n−1), for a constant α > 0. Then∑n

m=1Xn,m
d
=⇒ N (0, σ2

x) as n→ ∞.

Proposition 2 will be further exploited to propose our key
propositions in Section III-B.

In what follows, I denotes an identity matrix with ap-
propriate dimensions. For a matrix H ∈ Rn×t (n ≥ t),
PH = H(H∗H)−1H∗ is the orthogonal projection onto the
column subspace of H and P⊥

H = I − PH. Two random
variables X and Y are said to be equal in distribution, denoted
by X

d
= Y , if E[ϕ(X)Z] = E[ϕ(Y )Z], for any integrable

function ϕ and random variable Z. The following proposition
characterizes our conditional distribution result.

Proposition 3. Given A ∈ Rn×N , Ã ∈ Rn×N such that A d
=

Ã, and the set PX,Y = {A|A∗M = X,AQ = Y}, where
M ∈ Rn×t, X ∈ RN×t, Q ∈ RN×t, and Y ∈ Rn×t, the
following holds

A|PX,Y

d
= P⊥

MÃP⊥
Q +B, (2)

where A|PX,Y
is the orthogonal projection of A onto

PX,Y and B = Y(Q∗Q)−1Q∗ + M(M∗M)−1X∗ −
M(M∗M)−1X∗Q(Q∗Q)−1Q∗.

Proof. See Appendix C.



Remark 1. An equivalence to (2) was proven in [27, Lemma
10, Eqn. (3.29)]. The underlying assumption of [27] was that
Aij are i.i.d. following N (0, 1

n ), in which the conditional
distribution of A is computed based on its unitary-invariance
property (i.e., A ∈ I ∩ R). On the other hand, Proposition 3
does not rely on the unitary-invariance property. The result in
Proposition 3 will be exploited in Section III–IV to character-
ize the conditional distribution of A ∈ I in our SE analysis.

III. MAIN RESULTS

In this section, we present our main results by showing the
SE for AMP when A ∈ I and for the controlled function.

Given the linear observation in (1), the general AMP al-
gorithm [27] recurs the vectors ht+1 ∈ RN×1, qt ∈ RN×1,
bt ∈ Rn×1, and mt ∈ Rn×1, sequentially, for t ≥ 0, through

qt = ft(h
t,x0), bt = Aqt − λtm

t−1, (3a)
mt = gt(b

t,w), ht+1 = A∗mt − ξtq
t, (3b)

where q0 ∈ RN×1 is an initial condition, h0 = 0N , m−1 = 0n,
and ft(·, ·) and gt(·, ·) are controlled functions. The ft and
gt are applied entry-wise when their arguments are vectors,
e.g., gt(bt,w) = (gt(b

t
1, w1), . . . , gt(b

t
n, wn)) ∈ Rn×1. Suppose

that ft and gt are differentiable with respect to their first
argument. Then, the scalar λt and ξt in (3) are, respectively,
λt = 1

ρ
⟨f ′

t(h
t,x0)⟩ and ξt = ⟨g′t(bt,w)⟩, where f ′

t(h
t,x0) =(

∂ft
∂ht

1
, . . . , ∂ft

∂ht
N

)
∈ RN×1, g′t(bt,w) =

(
∂gt
∂bt1

, . . . , ∂gt
∂btn

)
∈ Rn×1,

∂f
∂x

denotes the partial derivative of f with respect to x, and
ρ = n

N is kept being constant as n and N tend to infinity.

A. Definitions and Assumptions
1) Controlled Function: A function ϕ: Rt×1 → R is called

a controlled function [36], [37] if for x ∈ Rt×1,

|ϕ(x)| ≤ c1 exp(c2∥x∥λ2 ), (4)

where c1 > 0, c2 > 0, and 1 ≤ λ < 2 are constant. The
controlled function is a general model of a nonlinear function
without polynomial smoothness constraint. Although the con-
trolled function may increase exponentially, it is integrable in
L1 and L2 spaces against Gaussian measure [36], [37]. Herein,
the space Lp(X ,F , µ) consists of all measurable functions
{f} on X such that

∫
X |f(x)|pdµ(x) < ∞, where (X ,F , µ)

is a measure space and p ∈ {1, 2}.
Using the inequalities ∥x∥2 ≤ ∥x∥λ ≤ t

1
λ− 1

2 ∥x∥2 for x ∈
Rt×1 and 1 ≤ λ < 2, we get from (4)

|ϕ(x)| ≤ c1 exp(c2∥x∥λλ) ≤ c1 exp(c2t
1
λ
− 1

2 ∥x∥λ2 ), (5)

revealing that c1 exp(c2∥x∥λλ) is also a controlled function.
2) Measurement Matrix: The matrix A in (1) consists

of independent entries Aij ∼ 1√
n
µij , with ⟨µij⟩ = 0 and

⟨µij⟩2 = 1, which are not necessarily identically distributed,
∀i, j, i.e., A ∈ I.

3) Signal x0 and Noise w: The entries of signal vector
x0 and noise w in (1) are i.i.d. according to the distribution
µX0

and µW , respectively, where ⟨µX0
⟩ = 0, ⟨µX0

⟩2 = σ2
X0

and ⟨µW ⟩ = 0, ⟨µW ⟩2 = σ2
W . The empirical distributions

x̂0
d
=⇒ µX0

as N → ∞, ŵ d
=⇒ µW as n→ ∞, and µX0

f <∞
and µW f <∞ for any controlled function f .

B. Convergence Lemmas

To find an asymptotic expression SE for the measurement
ensemble I, we establish the following lemmas.

Proposition 4. Let A(n) be a random variable with A(n) ∼
1√
n
µ, where ⟨µ⟩ = 0 and ⟨µ⟩2 = 1. Then E[A2+2α(n)] =

o(n−2) for α > 1.

Proof. See Appendix D.

We now present a the key proposition in our SE analysis.

Proposition 5. We let A(N) ∈ Rn×N be a random matrix
defined as in Section III-A2. Suppose that v(N) ∈ RN×1 is a
deterministic vector satisfying limN→∞⟨v2(N)⟩ = s20 <∞ and
lim supN→∞

1
N
∥v(N)∥2+2α

2+2α < ∞ for a constant α > 1.
Then, the following empirical law converges, ̂A(N)v(N)

d
=⇒

N
(
0, s20/ρ

)
as N → ∞ while ρ = n

N is kept being constant.

Proof. See Appendix E.

The next proposition is a direct consequence of Proposition 5.

Proposition 6. Suppose u ∈ RN×1 and v ∈ Rn×1 with
∥u∥2 = ∥v∥2 = 1. Then v∗Au

d
=⇒ Z√

n
as N → ∞, where the

matrix A is defined as in Proposition 5 and Z ∼ N (0, 1).

Remark 2. It is worth noting that Proposition 6 is a general-
ization of Lemma 2 in [27]. In [27], the standard properties of
Gaussian matrices are used to show Proposition 6. However,
this can not be directly extended to the measurement matrices
in I because its entries are not i.i.d.
C. State Evolution of General AMP Algorithm

Suppose that

lim
N→∞

⟨q0,q0⟩/ρ = σ2
0 <∞, lim sup

N→∞
∥q0∥2+2α

2+2α/N <∞, (6)

for a constant α > 1. Then, the SE for the general AMP in
(3) is described [27] by

τ2t = E
[
g2t (σtZ,W )

]
, σ2

t = E
[
f2
t (τt−1Z,X0)

]
/ρ, (7)

where X0 ∼ µX0 ,W ∼ µW , and Z ∼ N (0, 1) is independent of
W and X0. The SE in (7) has the same expression as the one
in [27], [28] except that the matrix A in our setting follows the
new assumptions in Section III-A2 and the controlled function.

Define a collection of vectors as a set Ft1,t2 =
{b0, . . . ,bt1−1,m0, . . . ,mt1−1,h1, . . . ,ht2 ,q0, . . . ,qt2 ,x0,w}.
The recursion in (3) can then be represented
by incorporating matrices as Yt = AQt with
Yt = [b0|b1 + λ1m

0| . . . |bt−1 + λt−1m
t−2] ∈ Rn×t and

Qt = [q0|q1| . . . |qt−1] ∈ RN×t, and Xt = A∗Mt with
Xt = [h1 + ξ0q

0| . . . |ht + ξt−1q
t−1] ∈ RN×t and

Mt = [m0| . . . |mt−1] ∈ Rn×t. The mt
|| and qt

|| denote,
respectively, the projection of mt and qt onto the column
spaces of Mt and Qt,

mt
|| =

t−1∑
i=0

ζim
i, qt

|| =

t−1∑
i=0

βiq
i, (8)

where ζi and βi quantify, respectively, the contributions of mi

and qi to the projected images of mt and qt. Then their null
space projections qt

⊥ and mt
⊥ are defined as

qt
⊥ = qt − qt

||, mt
⊥ = mt −mt

||. (9)



The following theorem is the main result of this work.

Theorem 1. Suppose {τt}t≥0 and {σt}t≥0 defined in (7).
Given the AMP recursion in (3), the following propositions
hold for t ≥ 0.
a)

bt|Ft,t

d
=⇒

t−1∑
j=0

βjb
j + Ãqt

⊥, as n→ ∞, (10)

ht+1|Ft+1,t

d
=⇒

t−1∑
j=0

ζjh
j+1 + Ã∗mt

⊥, as N → ∞, (11)

where Ã
d
= A.

b) For a constant α > 1,

lim sup
N→∞

1

N
∥qt

⊥∥2+2α
2+2α <∞, (12)

lim sup
n→∞

1

n
∥mt

⊥∥2+2α
2+2α <∞. (13)

c) For all 0 ≤ t1, t2 ≤ t,

lim
n→∞

⟨bt1 ,bt2⟩ a.s.
=

1

ρ
lim

N→∞
⟨qt1 ,qt2⟩ <∞. (14)

lim
N→∞

⟨ht1+1,ht2+1⟩ a.s.
= lim

n→∞
⟨mt1 ,mt2⟩ <∞. (15)

d) For all controlled functions ϕb and ϕh: Rt+2 → R,

lim
n→∞

1

n

n∑
i=1

ϕb(u
t
i)

a.s.
= E

[
ϕb(σ0Z̃0, .., σtZ̃t,W )

]
, (16)

lim
N→∞

1

N

N∑
i=1

ϕh(v
t
i)

a.s.
= E [ϕh(τ0Z0, .., τtZt, X0)] , (17)

where ut
i = (b0i . . . , b

t
i, wi) and vt

i = (h1i , .., h
t+1
i , x0i). The

(Z0, . . . , Zt) and (Z̃0, . . . , Z̃t) are Gaussian vectors, where
Zj and Z̃j are i.i.d. following N (0, 1), for j = 1, 2, . . . , t,
and independent of X0 and W .

Remark 3. The results in (16) and (17) are similar to Lemma
1b in [27] except that ϕb and ϕh in (16) and (17) are
controlled functions. The results in (10) and (11) represent
the convergence in the distribution of bt|Ft,t and ht+1|Ft+1,t ,
which are obtained by applying the conditioning technique
and Proposition 3 in our analysis. Compared to Lemma 1a
in [27], the expressions in (10) and (11) do not include the
basis-aligned deviation terms. More specifically, the bt|Ft,t

and ht+1|Ft+1,t
in Lemma 1a of [27] are

bt|Ft,t

d
=

t−1∑
j=0

βjb
j + Ãqt

⊥ + M̃t
−→o t(1), (18)

ht+1|Ft+1,t

d
=

t−1∑
j=0

ζjh
j+1 + Ã∗mt

⊥ + Q̃t+1
−→o t(1), (19)

where M̃t ∈ Rn×t and Q̃t+1 ∈ RN×(t+1) are the orthogonal
bases of the column subspaces of Mt and Qt+1, respectively.
The −→o t(1) denotes a vector in Rt×1 such that all entries
converge to 0 almost surely as N → ∞. The common
procedure for characterizing the SE in [27], [28], [31]–[33]
is to cancel the deviation terms M̃t

−→o t(1) and Q̃t+1
−→o t(1) in

(18) and (19), respectively, by assuming the smoothness of
the pseudo-Lipschitz functions. The challenge in our proof of
Theorem 1 is that there is no such smoothness for ϕb and
ϕh in (16) and (17), respectively, because they are controlled
functions. It is shown in Section IV that these deviation
terms vanish in our derivation, which leverages the concept

of empirical statistics developed in Section II-A. We note that
the SE in (7) is a special case of Theorem 1; its detailed
derivation is relegated to Appendix G.

Remark 4. The results in Theorem 1 directly verify the
conjecture about the validity of SE for i.i.d. non-Gaussian
measurement ensemble in [27] because the set of such A is a
subset of the A defined in Section III-A2.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is inspired by [27]. Since a part
of the proof is based on a similar technique in [27], we refer
to [27] for those standard arguments, while we present the
features that are unique and refined in this work. The proof is
based on mathematical induction in t and the application of
the conditioning technique on four sets F0,0,F1,0,Ft,t, and
Ft+1,t sequentially.

A. Step 1: Conditioning on F0,0 = {q0,x0,w}.
a) The convergence in (10) holds because b0 = Aq0 d

=
Ãq0

⊥, where q0
⊥ = q0 because Q0 is an empty matrix.

b) The bound in (12) is due to (6) and q0
⊥ = q0.

c) Given (6), applying Proposition 5 to A and q0 leads to
Âq0 d

=⇒ N (0, σ2
0). (20)

Hence, by Step 1a), limn→∞⟨b0,b0⟩ a.s.
= σ2

0 , implying
limn→∞⟨b0,b0⟩ a.s.

= limN→∞
⟨q0,q0⟩

ρ
< ∞, which completes

the proof of (14).
d) We let ũ0

i = (σ0Z̃0, wi), ∀i, where Z̃0 ∼
N (0, 1). From (20), the convergence u0

i
d
=⇒ ũ0

i holds. To

prove (16), we first claim that limn→∞
1
n

∑n
i=1 ϕb(ũ

0
i )

a.s.
=

E[ϕb(σ0Z̃0,W )]. By the triangular inequality, we have∣∣∣ 1n ∑n
i=1 ϕb(ũ

0
i ) − E[ϕb(σ0Z̃0,W )]

∣∣∣ ≤ X0
1 + X0

2 , where

X0
1 =

∣∣∣ 1n ∑n
i=1

(
ϕb(ũ

0
i ) − EZ̃0

[ϕb(ũ
0
i )]

)∣∣∣ and X0
2 =∣∣∣ 1n ∑n

i=1 EZ̃0
[ϕb(ũ

0
i )] − E[ϕb(σ0Z̃0,W )]

∣∣∣. The goal is to prove
that limn→∞X0

1
a.s.
= 0 and limn→∞X0

2
a.s.
= 0, respectively.

Since ϕb is a controlled function, we get by (5) |ϕb(ũ
0
i )| ≤

c01 exp(c
0
2(|σ0Z̃0|λ + |wi|λ)), where c01 > 0, c02 > 0, and

1 ≤ λ < 2 are constant. Hence, EZ̃0
[|ϕb(ũ0

i )|2+κ] ≤
c03 exp(c

0
4|wi|λ)EZ̃0

[exp(c04|σ0Z̃0|λ)], where 0 < κ < 1,
c03 = (c01)

2+κ, and c04 = c02(2 + κ). Thus,

EZ̃0
[|ϕb(ũ0

i )|2+κ] ≤ c05 exp(c
0
4|wi|λ), (21)

where c05 = c03EZ̃0
[exp(c04|σ0Z̃0|λ)] is constant. Define X0

n,i =

ϕb(ũ
0
i )−EZ̃0

[ϕb(ũ
0
i )], ∀i. To prove the thesis limn→∞X0

1
a.s.
=

0, we show that {X0
n,i}ni=1 satisfy Lemma 3 in Appendix F. In-

deed, applying Holder’s inequality in Lemma 4 in Appendix F
to X0

n,i gives

EZ̃0
[|X0

n,i|2+κ] ≤ 21+κ
(
EZ̃0

[|ϕb(ũ
0
i )|2+κ] + |EZ̃0

[ϕb(ũ
0
i )]|2+κ

)
,

≤ c06 exp(c
0
4|wi|λ), (22a)

where c06 = 22+κc05 and (22a) follows from Lemma 5
(Lyapunov’s inequality) in Appendix F and (21). Note that
1
n

∑n
i=1 c

0
6 exp(c

0
4|wi|λ)

a.s.
= E[c06 exp(c04|W |λ)]. For n suffi-

ciently large, using (22a) gives



1

n

n∑
i=1

EZ̃0
[|X0

n,i|2+κ] ≤ E[c06 exp(c04|W |λ)] < cnκ/2, (23)

where c > 0 is constant and (23) follows from the facts that
E[c06 exp(c04|W |λ)] = c07 < ∞ and there exists a constant
n0 > 0 such that c07 < cnκ/2 for n > n0. Lemma 3 in
Appendix F leads to limn→∞

1
n

∑n
i=1X

0
n,i

a.s.
= 0, implying

limn→∞X0
1

a.s.
= 0.

The rest of Step 1d) is showing the convergence
limn→∞X0

2
a.s.
= 0. Define ϕ̃b(wi) = EZ̃0

[ϕb(ũ
0
i )], ∀i.

Then limn→∞
1
n

∑n
i=1 ϕ̃b(wi)

a.s.
= E[ϕ̃b(W )] because

ŵ
d
=⇒ µW . Hence, limn→∞

1
n

∑n
i=1 EZ̃0

[ϕb(ũ
0
i )]

a.s.
=

EW [EZ̃0
[ϕb(σ0Z̃0,W )]]

a.s.
= E[ϕb(σ0Z̃0,W )], implying

limn→∞X0
2

a.s.
= 0, concludes (16).

B. Step 2: Conditioning on F1,0 = {b0,m0,q0,x0,w}.

a) From (3), h1|F1,0

d
= A∗|F1,0m

0−ξ0q0. Conditioning on
F1,0 is equivalent to conditioning on {A|Aq0 = b0}. Hence,
applying Proposition 3 yields A|F1,0

d
= ÃP⊥

q0 + b0q0∗

∥q0∥22
. Then

h1|F1,0

d
= P⊥

q0Ã∗m0 + b0∗m0

∥q0∥2
2
q0 − ξ0q

0, resulting in

h1|F1,0

a.s.
= Ã∗m0 −Pq0Ã∗m0 +

(
ρ
⟨b0,m0⟩
⟨q0,q0⟩ − ξ0

)
q0. (24)

Substituting m0 = g0(b
0,w) into ⟨b0,m0⟩ in (24)

gives limn→∞⟨b0,m0⟩ a.s.
= E[σ0Z̃0g0(σ0Z̃0,W )]

a.s.
=

σ2
0E[g′0(σ0Z̃,W )]

a.s.
= limn→∞⟨b0,b0⟩⟨g′0(b0,w)⟩, where the

first equality is due to (16) applied to ϕb(u
0
i ) = b0i g0(b

0
i , wi),

the second equality is due to Stein’s Lemma (Lemma 2)
in Appendix F, the third equality is obtained by setting
ϕb(u

0
i ) = g′0(b

0
i , wi) in (16). Note that ξ0 = ⟨g′0(b0,w)⟩.

Using (14) gives limn→∞⟨b0,m0⟩ a.s.
= limN→∞

⟨q0,q0⟩
ρ

ξ0,
which is plugged into (24) to result in

h1|F1,0

d
= Ã∗m0 −Pq0Ã∗m0 + o(1)q0, (25)

where limn→∞ o(1)
a.s.
= 0. Using Proposition 7 in Ap-

pendix F, the second term on the right-hand side (r.h.s)
of (25) converges to limN→∞ Pq0Ã∗m0 a.s.

= 0N . We claim
that the last term converges to limN→∞ o(1)q0 a.s.

= 0N .
Indeed, this is true because (i) the empirical expectation
of o(1)q0 satisfies limN→∞⟨ô(1)q0⟩ a.s.

= 0, which holds due
to limN→∞ |⟨ô(1)q0⟩| ≤ limN→∞ |o(1)| 1N

∑N
i=1 |q0i |

a.s.
=

0 and (ii) the empirical variance of o(1)q0 converges to
limN→∞⟨ô(1)q0⟩2 = limN→∞[o(1)]2⟨q0,q0⟩ a.s.

= 0. Thus,
h1|F1,0

d
=⇒ Ã∗m0, which concludes (11) when t = 0 since

m0 = m0
⊥; note that M0 is an empty matrix.

b) The bound in (13) is equivalent to
lim supn→∞

1
n

∑n
i=1 |m

0
i |2+2α <∞. Incorporating ϕb(b

0
i , wi) =

|g0(b0i , wi)|2+2α for a constant α > 1 into (16) leads to
limn→∞

1
n

∑n
i=1 |m0

i |2+2α a.s.
= E[|g0(σ0Z̃0,W )|2+2α] < ∞,

which completes the proof.
c) By (16) at t = 0, we get limn→∞⟨g0(b0,w), g0(b

0,w)⟩ a.s.
=

E[g20(σ0Z̃0,W )], leading to limn→∞⟨m0,m0⟩ a.s.
= τ20 due to

the definitions of m0 in (3) and τ20 in (7). Thus, Propo-
sition 5 (Lindeberg-Feller) holds because m0

⊥ = m0 and
(13), resulting in Ã∗m0 d

=⇒ N (0, τ20 ) and ĥ1 d
=⇒ N (0, τ20 ),

i.e., limN→∞⟨h1,h1⟩ a.s.
= τ20 . Hence, limN→∞⟨h1,h1⟩ a.s.

=

limn→∞⟨m0,m0⟩<∞, concluding (15).

d) We let ṽ0
i = (τ0Z0, x0i), ∀i. Because v0

i
d
=⇒ ṽ0

i holds

due to ĥ1
i

d
=⇒ N (0, τ20 ) (Lindeberg-Feller), ∀i, the proof of

(17) is boiled down to showing limN→∞
1
N

∑N
i=1 ϕh(ṽ

0
i )

a.s.
=

E[ϕh(τ0Z0, X0)]. Similar to Step 1d), by the triangu-
lar inequality

∣∣∣ 1
N

∑N
i=1 ϕh(ṽ

0
i ) − E[ϕh(τ0Z0, X0)]

∣∣∣ ≤ Y 0
1 +

Y 0
2 , where Y 0

1 =
∣∣∣ 1
N

∑N
i=1 ϕh(ṽ

0
i ) − EZ0 [ϕh(ṽ

0
i )]

∣∣∣ and

Y 0
2 =

∣∣∣ 1
N

∑N
i=1 EZ0 [ϕh(ṽ

0
i )] − E[ϕh(τ0Z0, X0)]

∣∣∣. We claim that

limN→∞ Y 0
1

a.s.
= 0 and limN→∞ Y 0

2
a.s.
= 0.

The convergence limN→∞ Y 0
1

a.s.
= 0 is treated first. Defining

Y 0
N,i = ϕh(ṽ

0
i ) − EZ0 [ϕh(ṽ

0
i )], the proof is equivalent to

showing that {Y 0
N,i}Ni=1 satisfy Lemma 3 in Appendix F. Since

ϕh is a controlled function, the following holds |ϕh(ṽ
0
i )| ≤

d01 exp(d
0
2(|τ0Z0|λ + |x0i|λ)), where d01 > 0, d02 > 0, and

1 ≤ λ < 2 are constant. Hence, EZ0 [|ϕh(ṽ
0
i )|2+κ] ≤

d03 exp(d
0
4|x0i|λ)EZ0 [exp(d

0
4|τ0Z0|λ)], where 0 < κ < 1, d03 =

(d01)
2+κ, and d04 = d02(2 + κ). Therefore,

EZ0 [|ϕh(ṽ
0
i )|2+κ] ≤ d05 exp(d

0
4|x0i|λ), (26)

where d05 = d03EZ0 [exp(d
0
4|τ0Z0|λ)] is a constant. By Lemma 4

in Appendix F,
EZ0 [|Y

0
N,i|2+κ] ≤ 21+κ (

EZ0 [|ϕh(ṽ
0
i )|2+κ] + |EZ0 [ϕh(ṽ

0
i )]|2+κ) ,

≤ d06 exp(d
0
4|x0i|λ), (27a)

where d06 = 22+κd05 and (27a) follows from Lemma 5 in
Appendix F and (26). Note that 1

N

∑N
i=1 d

0
6 exp(d

0
4|x0i|λ)

a.s.
=

E[d06 exp(d04|X0|λ)]. For N is sufficiently large, we have
1

N

N∑
i=1

EZ0 [|Y
0
N,i|2+κ] ≤ E[d06 exp(d04|X0|λ)] < cNκ/2, (28)

where c > 0 is constant and the last estimation in (28) follows
because E[d06 exp(d04|X0|λ)] = d07 < ∞ and there exists a
constant N0 > 0 such that d07 < cNκ/2 for N > N0. Given
(28), applying Lemma 3 in Appendix F to {Y 0

N,i}Ni=1 gives
limN→∞

1
N

∑N
i=1 Y

0
N,i

a.s.
= 0, implying limN→∞ Y 0

1
a.s.
= 0.

To show limN→∞ Y 0
2

a.s.
= 0, we define

ϕ̃h(x0i) = EZ0 [ϕh(ṽ
0
i )]. Then the following holds,

limN→∞
1
N

∑N
i=1 ϕ̃h(x0i)

a.s.
= E[ϕ̃h(X0)] because

x̂0
d
=⇒ µX0 . Thus, limN→∞

1
N

∑N
i=1 EZ0 [ϕh(ṽ

0
i )]

a.s.
=

EX0 [EZ0 [ϕh(τ0Z0, X0)]] = E[ϕh(τ0Z0, X0)], resulting in
limN→∞ Y 0

2
a.s.
= 0, concluding (17).

Suppose Theorem 1 holds up to the (t− 1)th iteration. We
prove that the thesis also holds for the tth iteration. Similar
to the first two steps, we show (10), (12), (14), and (16) in
Step 3 and (11), (13), (15), and (17) in Step 4, respectively,
which are more complex and thus, relegated to Appendix H.

V. CONCLUSION

The SE analysis for AMP was extended to the class
of measurement matrices with independent (not necessarily
identically distributed) entries and the controlled functions. A
variant of the Lindeberg-Feller was proposed to deal with the
lack of the structure of the assumed measurement ensemble.
An empirical statistic-based conditioning technique was pro-
posed to cope with the lack of smoothness of the controlled
functions. The results revealed a new direction to the SE
analysis for boarder classes of measurement ensembles and
functions.
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APPENDIX A
PSEUDO-LIPSCHITZ FUNCTION

Definition 1. For a k > 1, a function f : Rn×1 → R is said
pseudo-Lipschitz of order k if there exists a constant L > 0
such that |f(x)− f(y)| ≤ L(1 + ∥x∥k−1 + ∥y∥k−1)∥x− y∥,
for all x,y ∈ Rn×1; the first order derivative of f is bounded
by a polynomial of order (k−1), i.e., polynomial smoothness.

APPENDIX B
PROOF OF PROPOSITION 1

This follows from
∑n

m=1 E
[
X2

n,m; |Xn,m| > ϵ
]

≤∑n
m=1 E

[
X2+2α

n,m

ϵ2α

]
, where the right-hand side converges to zero

because n
ϵ2α o(n

−1) → 0 as n→ ∞.

APPENDIX C
PROOF OF PROPOSITION 3

Recalling the following subspace decomposition
A = P⊥

MAP⊥
Q + APQ + PMA − PMAPQ, the

orthogonal projection of A onto PX,Y is given
by A|PX,Y = P⊥

MAP⊥
Q + B. For any integrable

function ψ, E
[
ψ(A|PX,Y )

]
= E

[
ψ(P⊥

MAP⊥
Q +B)

]
=

E
[
ψ(P⊥

MÃP⊥
Q +B)

]
= E

[
ψ(Ã|PX,Y )

]
, where the second

equality follows from the fact that A
d
= Ã. Hence,

A|PX,Y

d
= P⊥

MÃP⊥
Q +B, which completes the proof.

APPENDIX D
PROOF OF PROPOSITION 4

Denoting B =
√
nA(n) ∼ µ yields E

[
A2+2α(n)

]
=

E
[
B2(1+α)

]
n−(1+α) = o(n−2), where the last step uses the

facts that E
[
B2(1+α)

]
is independent of n and α > 1.

APPENDIX E
PROOF OF PROPOSITION 5

Denoting XN,ij = Aij(N)vj(N), then {XN,ij : 1 ≤
j ≤ N} is an independent zero-mean triangular array,
for i = 1, 2, . . . , n. We claim that {XN,ij : 1 ≤ j ≤
N} satisfies two conditions in Proposition 2, ∀i. First,
we note that

∑N
j=1 E[X

2
N,ij ] =

∑N
j=1 E[A

2
ij(N)]v2j (N) =

1
n

∑N
j=1 v

2
j (N) = 1

ρ
⟨v2(N)⟩ → s20

ρ
as n → ∞. Second,

applying Proposition 4 to Aij(N) gives E[A2+2α
ij (N)] =

o(n−2), leading to E[X2+2α
N,ij ] = E[A2+2α

ij (N)]|vj(N)|2+2α ≤
o(n−2)n

ρ
1
N
∥v(N)∥2+2α

2+2α = o(n−1), where the last equality holds
because lim supN→∞

1
N
∥v(N)∥2+2α

2+2α < ∞ and ρ is a constant.
Applying Proposition 2 to {XN,ij : 1 ≤ j ≤ N} leads to
[A(N)v(N)]i =

∑N
j=1XN,ij

d
=⇒ N

(
0,

s20
ρ

)
as N → ∞, ∀i.

Hence, ̂A(N)v(N)
d
=⇒ N

(
0,

s20
ρ

)
as N → ∞.

APPENDIX F
WELL-KNOWN LEMMAS

Lemma 2. (Stein’s Lemma [39]) For jointly zero-mean
Gaussian random variables Z1 and Z2, and any function
ϕ : R → R, where E[ϕ′(Z2)] and E[Z1ϕ(Z2)] exist, the
following holds E[Z1ϕ(Z2)] = Cov(Z1, Z2)E[ϕ′(Z2)], where
Cov(Z1, Z2) is the covariance between Z1 and Z2.

Lemma 3. (Strong Law of Large Number [40]) Let {Xn,m :
1 ≤ m ≤ n} be a triangular array of random variables with
(Xn,1, Xn,2, . . . , Xn,n) mutually independent with zero-mean
for each n and 1

n

∑n
m=1 E[|Xn,m|2+κ] ≤ cnκ/2 for some 0 <

κ < 1 and c <∞. Then limn→∞
1
n

∑n
m=1Xn,m

a.s.
= 0.

Lemma 4. (Holder’s inequality [41]) For random variables
X and Y , E[|X + Y |r] ≤ cr(E[|X|r] + E[|Y |r]), where cr =
1 if 0 < r ≤ 1 and cr = 2r−1 otherwise. In particular, the
inequality becomes E[|X + y|r] ≤ cr(E[|X|r] + |y|r]) when
Y = y being a constant.

Lemma 5. (Lyapunov’s inequality [41]) Suppose a random
variable X and a constant κ with 0 < κ < 1, then
|E[X]|2+κ ≤ E[|X|2+κ].

Proposition 7. Suppose the PM(n) =
(

1√
n
V(n)

)(
1√
n
V(n)

)∗
,

where M(n) ∈ Rn×t (t ≤ n), t is a fixed constant, and
V(n)=[v1(n),v2(n), . . . ,vt(n)] ∈ Rn×t is an orthogonal
basis of M(n) such that V∗(n)V(n) = nI. If we let
a(n) ∈ Rn×1 be a random vector with independent en-
tries, which have zero mean and finite variance σ2

a, then
limn→∞ PM(n)a(n)

a.s.
= 0n, where 0n is the n × 1 all-zero

vector.

Proof. Denoting ã(n) = a(n)
∥a(n)∥2

yields PM(n)a(n) =

V(n)∥a(n)∥2√
n

(
1√
n
V∗(n)

)
ã(n). The proposition follows from

the fact that ∥a(n)∥2√
n

a.s.
= σa and

(
1√
n
V∗(n)

)
ã(n)

a.s.
= 0n as

n→ ∞.

APPENDIX G
PROOF OF SE IN (7) THEOREM 1

Substituting ϕb(u
t
i) = (bti)

2 into (16) gives
limn→∞⟨bt,bt⟩ a.s

= E
[
σ2
t Z̃

2
t

]
= σ2

t . Using (14) with
t1 = t2 = t yields limN→∞

1
ρ ⟨qt,qt⟩ = σ2

t . Then
substituting ϕh(v

t−1
i ) = f2t (h

t
i, x0i) = (qti)

2 into (17)
leads to limN→∞⟨qt,qt⟩ a.s

= E
[
f2t (τt−1Zt−1, X0)

]
,

resulting in σ2
t = 1

ρE
[
f2t (τt−1Zt−1, X0)

]
. Showing the

rest half τ2t = E
[
g2t (σtZ,W )

]
of the SE in (7) follows

from the exactly same procedure as the above. Setting
ϕh(v

t
i) = (ht+1

i )2 in (17) gives limN→∞⟨ht+1,ht+1⟩ = τ2t .
Using (15) with t1 = t2 = t yields limN→∞⟨mt,mt⟩ = τ2t .
Applying (16) to ϕb(u

t
i) = g2t (b

t
i, wi) yields

limN→∞⟨mt,mt⟩ = E
[
g2t (σtZ,W )

]
. Therefore,

τ2t = E
[
g2t (σtZ,W )

]
, concluding the proof.

APPENDIX H
PROOF OF THEOREM 1: STEPS 3 AND 4

A. Step 3: We show a), b), c), and d)
of Theorem 1 conditioning on Ft,t =
{b0, . . . ,bt−1,m0, . . . ,mt−1,h1, . . . ,ht,q0, . . . ,qt,x0,w}.

a) Note that conditioning on Ft,t is equivalent to condition-
ing on PXt,Yt = {A|A∗Mt = Xt,AQt = Yt}. Applying
Proposition 3 to obtain the conditional distribution A|Ft,t



and following the same procedure as in [27, Lemma 1a], the
conditional distribution of bt on Ft,t is expressed as

bt|Ft,t

d
=

t−1∑
j=0

βjb
j + Ãqt

⊥ −PMt
Ãqt

⊥ +Mt
−→ot(1). (29)

By Proposition 7 in Appendix F, the third term on the r.h.s
of (29) converges to limn→∞ PMt

Ãqt
⊥

a.s.
= 0n. Similar to

Step 2a), we verify the convergence limn→∞ Mt
−→o t(1)

a.s.
=

0n by characterizing the expectation and variance of its
empirical distribution M̂t

−→o t(1) as n → ∞. Indeed,
limn→∞ |⟨Mt

−→o t(1)⟩| ≤ limn→∞ |o(1)| 1n
∑n

i=1

∣∣∣∑t−1
j=0m

j
i

∣∣∣
≤ limn→∞ |o(1)|∑t−1

j=0
1
n

∑n
i=1 |m

j
i |

a.s.
= 0, where the last

equality holds because applying ϕb(b
j
i , wi) = gj(b

j
i , wi)

to the induction hypothesis of (16), for j < t, leads to
limn→∞

1
n

∑n
i=1 |m

j
i |

a.s.
= E[|gj(σjZ̃j ,W )|] < ∞. Hence,

limn→∞⟨Mt
−→o t(1)⟩ a.s.

= 0. For the variance of M̂t
−→o t(1), we

get

lim
n→∞

⟨Mt
−→o t(1)⟩2 = lim

n→∞

1

n
[o(1)]2

n∑
i=1

t−1∑
j=0

mj
i

2

,

≤ lim
n→∞

[o(1)]2t
1

n

n∑
i=1

t−1∑
j=0

(mj
i )

2, (30a)

= lim
n→∞

[o(1)]2t

t−1∑
j=0

⟨mj ,mj⟩ a.s.
= 0,(30b)

where (30a) follows from the Cauchy-Schwarz inequality and
(30b) holds because limn→∞⟨mj ,mj⟩ a.s.

= E[g2j (σjZ̃j ,W )] <
∞, ∀j, which is a direct consequence of the induction
hypothesis of (16) with ϕb(b

j
i , wi) = g2j (b

j
i , wi). Hence,

(30b) is equivalent to limn→∞⟨Mt
−→o t(1)⟩2 a.s.

= 0. Therefore,
limn→∞ Mt

−→o t(1)
a.s.
= 0n, implying

bt|Ft,t

d
=⇒

t−1∑
j=0

βjb
j + Ãqt

⊥. (31)

b) Note that by the induction hypothesis of
(17) for ϕh(h

t
i, x0i) = |ft(hti, x0i)|2+2α, we get

limN→∞
1
N

∑N
i=1 |qti |2+2α a.s.

= E[|ft(τt−1Zt−1, X0)|2+2α] <

∞. On the other hand,
∑N

i=1 |qt⊥i|2+2α <
∑N

i=1 |qti |2+2α.
Thus, we have lim supN→∞

1
N

∑N
i=1 |qt⊥i|2+2α < ∞, which

concludes (12).
c) For t1 < t and t2 = t, we obtain

lim
n→∞

⟨bt1 ,bt⟩ d
= lim

n→∞

t−1∑
j=0

βj⟨bt1 ,bj⟩+ lim
n→∞

⟨bt1 , Ãqt
⊥⟩,(32a)

a.s.
=

t−1∑
j=0

βj lim
N→∞

⟨qt1 ,qj⟩
ρ

+ lim
n→∞

bt∗1 Ãqt
⊥

n
,(32b)

where (32a) follows from (31) and (32b) results from the
induction hypothesis (14) for t1 < t and t2 = j < t. Now,

using Proposition 6, we get bt∗1
∥bt1∥2

Ã
qt
⊥

∥qt
⊥∥2

d
= Z√

n
, where

Z ∼ N (0, 1). Hence, bt∗1 Ãqt
⊥

n

d
= ∥bt1∥2√

n

∥qt
⊥∥2√
N

1√
ρ

Z√
n

, i.e.,

bt∗1 Ãqt
⊥

n

d
=

1
√
ρ

√
⟨bt1 ,bt1⟩⟨qt

⊥,q
t
⊥⟩

Z√
n
. (33)

By the induction hypothesis of (14), we have
limn→∞⟨bt1 ,bt1⟩ = limn→∞

⟨qt1 ,qt1 ⟩
ρ < ∞. Moreover,

the ⟨qt
⊥,q

t
⊥⟩ converges to limN→∞⟨qt

⊥,q
t
⊥⟩ <

limN→∞⟨qt,qt⟩ < ∞ because using the induction
hypothesis (17) we have ⟨qt,qt⟩ = 1

N

∑N
i=1 f

2
t (h

t
i, x0i)

a.s.
=

E[f2t (τt−1Zt−1, X0)] <∞. Thus, for t1 < t,

lim
n→∞

⟨Ãqt
⊥,b

t1⟩ a.s.
= 0. (34)

Substituting (34) into (32b) gives limn→∞⟨bt1 ,bt⟩ a.s.
=∑t−1

j=0 βj limn→∞
⟨qt1 ,qj⟩

ρ = limN→∞
⟨qt1 ,qt

||⟩
ρ due to (8),

implying

lim
n→∞

⟨bt1 ,bt⟩ a.s.
= lim

N→∞

⟨qt1 ,qt
||⟩

ρ
+ lim

N→∞

⟨qt1 ,qt
⊥⟩

ρ
, (35a)

= lim
N→∞

⟨qt1 ,qt⟩
ρ

, (35b)

where (35a) follows from the fact that qj is orthogonal to qt
⊥,

for j < t, and (35b) holds due to (9), concluding (14) when
t1 < t and t2 = t.

For the case of t1 = t2 = t, it is similarly
given by limn→∞⟨bt,bt⟩ d

=
∑t−1

i,j=0 βiβj limn→∞⟨bi,bj⟩+
2
∑t−1

i=0 βi limn→∞⟨bi, Ãqt
⊥⟩+ limn→∞⟨Ãqt

⊥, Ãqt
⊥⟩ due to

(31). Then, by (34), the following holds

lim
n→∞

⟨bt,bt⟩ a.s.
=

t−1∑
i,j=0

βiβj lim
n→∞

⟨bi,bj⟩+ lim
n→∞

⟨Ãqt
⊥, Ãqt

⊥⟩. (36)

Using Proposition 5, ̂̃
Aqt

⊥
d
=⇒ N

(
0, limN→∞

⟨qt
⊥,qt

⊥⟩
ρ

)
.

Thus, the second moment of ̂̃
Aqt

⊥ is

lim
n→∞

⟨Ãqt
⊥, Ãqt

⊥⟩
a.s.
= lim

N→∞

⟨qt
⊥,q

t
⊥⟩

ρ
. (37)

Now, incorporating (37) in (36), limn→∞⟨bt,bt⟩ a.s.
=∑t−1

i,j=0 βiβj limn→∞⟨bi,bj⟩+limN→∞
⟨qt

⊥,qt
⊥⟩

ρ , resulting in

lim
n→∞

⟨bt,bt⟩ a.s.
=

t−1∑
i,j=0

βiβj lim
N→∞

⟨qi,qj⟩
ρ

+ lim
N→∞

⟨qt
⊥,q

t
⊥⟩

ρ
, (38a)

a.s.
= lim

N→∞

⟨qt
||,q

t
||⟩

ρ
+ lim

N→∞

⟨qt
⊥,q

t
⊥⟩

ρ
,

a.s.
= lim

N→∞

⟨qt,qt⟩
ρ

,

where (38a) is due to the induction hypothesis (14) for
0 ≤ t1 = i, t2 = j ≤ t − 1. This completes the proof of (14)
at the tth iteration.



d) Defining limN→∞
⟨qt

⊥,qt
⊥⟩

ρ

a.s.
= γ2t , we can write by (37)

that ̂̃
Aqt

⊥
d
=⇒ N (0, γ2t ). Using (31) in conjunction with the

latter, we get

bti|Ft,t

d
=⇒

t−1∑
j=0

βjb
j
i + γtZ, for i = 1, 2, . . . , n, (39)

where Z ∼ N (0, 1). Similar to Step 1d), using
(39) ut

i
d
=⇒ ũt

i, where ut
i = (b0i . . . , b

t
i, wi) and

ũt
i = (b0i , . . . , b

t−1
i ,

∑t−1
j=0 βjb

j
i + γtZ,wi), ∀i. To prove

(16), we first claim that limn→∞
1
n

∑n
i=1 ϕb(ũ

t
i) −

E
[
ϕb(σ0Z̃0, . . . , σtZ̃t,W )

]
a.s.
= 0. By the triangular inequal-

ity,
∣∣∣∣ limn→∞

1
n

∑n
i=1 ϕb(ũ

t
i) − E

[
ϕb(σ0Z̃0, . . . , σtZ̃t,W )

] ∣∣∣∣ ≤

Xt
1 + Xt

2, where Xt
1 =

∣∣∣∣ 1n ∑n
i=1

(
ϕb(ũ

t
i)− ϕ̃b(u

t−1
i )

) ∣∣∣∣,
Xt

2 =

∣∣∣∣ 1n ∑n
i=1 ϕ̃b(u

t−1
i ) − E[ϕb(σ0Z̃0, . . . , σtZ̃t,W )]

∣∣∣∣, and

ϕ̃b(u
t−1
i ) = EZ [ϕb(ũ

t
i)]. Similar to Step 1d), we verify

limn→∞Xt
1

a.s.
= 0 and limn→∞Xt

2
a.s.
= 0.

First showing limn→∞Xt
1

a.s.
= 0 is of interest. By

(5), |ϕb(ũt
i)| ≤ ct1 exp

(
ct2

(∑t−1
j=0 |bti|λ +

∣∣∣∑t−1
j=0 βjb

j
i +

γtZ
∣∣∣λ + |wi|λ

))
, where ct1 > 0, ct2 > 0, and

1 ≤ λ < 2 are constants. Using the inequality
∥x∥λ1 ≤ (t + 1)λ−1∥x∥λλ for x ∈ R(t+1)×1, we get
|ϕb(ũt

i)| ≤ ct1 exp
(
ct2

(∑t−1
j=0(1 + (t + 1)λ−1|βj |λ)|bti|λ +

(t + 1)λ−1|γt|λ|Z|λ + |wi|λ
))
. Hence, EZ [|ϕb(ũt

i)|2+κ] ≤
ct3 exp

(
ct4

(∑t−1
j=0 |b

j
i |λ + |wi|λ

))
EZ

[
exp(ct4|Z|λ)

]
, where

0 < κ < 1, ct3 = (ct1)
2+κ, and ct4 = (2 + κ)ct2 max

{
1 +

(t+1)λ−1|β0|λ, . . . , 1+ (t+1)λ−1|βt−1|λ, (t+1)λ−1|γt|λ
}

,
resulting in

EZ [|ϕb(ũt
i)|2+κ] ≤ ct5 exp

(
ct4

( t−1∑
j=0

|βjbji |λ + |wi|λ
))
, (40)

and ct5 = ct3EZ

[
exp(ct4γ

λ
t |Z|λ)

]
is constant. We define

Xt
n,i = ϕb(ũ

t
i) − ϕ̃b(u

t−1
i ) = ϕb(ũ

t
i) − EZ [ϕb(ũ

t
i)] such

that Xt
1 = | 1n

∑n
i=1X

t
n,i|. To prove limn→∞Xt

1
a.s.
= 0, we

show that {Xt
n,i}ni=1 satisfy Lemma 3 in Appendix F. Indeed,

EZ [|Xt
n,i|2+κ] is upper bouned as follows,

EZ [|Xt
n,i|2+κ] ≤ 21+κ

(
EZ

[
|ϕb(ũ

t
i)|2+κ]+∣∣EZ [ϕb(ũ

t
i)]

∣∣2+κ
)
,(41a)

≤ 22+κEZ

[
|ϕb(ũ

t
i)|2+κ] , (41b)

≤ ct6 exp
(
ct4

( t−1∑
j=0

|βjbji |
λ + |wi|λ

))
, (41c)

where (41a) follows from Lemma 4 (Holder’s inequality)
in Appendix F, (41b) follows from Lemma 5 (Lyapunov’s
inequality) in Appendix F, and (41c) follows from (40) with
ct6 = 22+κct5. We denote the last term of (41c) as ψb(u

t−1
i ) =

ct6 exp
(
ct4

(∑t−1
j=0 |βjb

j
i |

λ + |wi|λ
))

. Then, ψb(u
t−1
i ) is a con-

trolled function. From (41c), we get, for n is sufficiently large,

1

n

n∑
i=1

EZ [|Xt
n,i|2+κ] ≤ 1

n

n∑
i=1

ψb(u
t−1
i ),

a.s.
= E[ψb(σ0Z̃0, . . . , σt−1Z̃t−1,W )], (42a)

< cnκ/2, (42b)

where c is a positive constant, (42a) is due to the
induction hypothesis (16), and (42b) holds because
E[ψb(σ0Z̃0, . . . , σt−1Z̃t−1,W )] = ct7 < ∞ and there exists
nt, a positive constant, such that ct7 < cnκ/2 for n > nt. By
Lemma 3 in Appendix F, we get limn→∞

1
n

∑n
i=1X

t
n,i

a.s.
= 0,

implying

1

n

n∑
i=1

(
ϕb(ũ

t
i)− ϕ̃b(u

t−1
i )

)
a.s.
= 0, (43)

which proving limn→∞Xt
1

a.s.
= 0.

Now, showing limn→∞Xt
2

a.s.
= 0 is of interest. By the

induction hypothesis (16), limn→∞
1
n

∑n
i=1 ϕ̃b(u

t−1
i )

a.s.
=

E[ϕ̃b(σ0Z̃0, . . . , σt−1Z̃t−1,W )], resulting in

lim
n→∞

1

n

n∑
i=1

ϕ̃b(u
t−1
i )

= E

[
EZ

[
ϕb(σ0Z̃0, . . . , σt−1Z̃t−1,

t−1∑
j=0

βjσjZ̃j + γtZ,W )

]]
,

= E

[
ϕb(σ0Z̃0, . . . , σt−1Z̃t−1,

t−1∑
j=0

βjσjZ̃j + γtZ,W )

]
,

(44)

where (44) follows from the substitution ϕ̃b(u
t−1
i ) =

EZ [ϕb(ũ
t
i)]. Therefore, showing limn→∞Xt

2
a.s.
= 0 is equiv-

alent to proving
∑t−1

j=0 βjσjZ̃j + γtZ = σtZ̃t, where Z̃t ∼
N (0, 1) and σt is defined in (7).

In particular, for ϕb(u
t
i) = (bti)

2, we get

ϕb(ũ
t
i) =

(∑t−1
j=0 βjb

j
i + γtZ

)2

because ũt
i =

(b0i , . . . , b
t−1
i ,

∑t−1
j=0 βjb

j
i + γtZ,wi). Combining (43)

and (44),

lim
n→∞

⟨bt,bt⟩ = lim
n→∞

1

n

n∑
i=1

ϕb(u
t
i)

d
= lim

n→∞

1

n

n∑
i=1

ϕb(ũ
t
i)

a.s.
= E

[( t−1∑
j=0

βjσjZ̃j + γtZ
)2]

. (45)

Using (14), limn→∞⟨bt,bt⟩ a.s.
= limN→∞

⟨qt,qt⟩
ρ =

σ2
t , where the last equality holds because by the in-

duction hypothesis (17) for ϕh(v
t−1
i ) = f2t (h

t
i, x0i) in

(17), 1
ρ limN→∞⟨qt,qt⟩ a.s.

= 1
ρE[f

2
t (τt−1Z,X0)] = σ2

t .

Hence, E
[(∑t−1

j=0 βjσjZ̃j + γtZ
)2

]
a.s.
= σ2

t , implying∑t−1
j=0 βjσjZ̃j + γtZ = σtZ̃t due to (45), verifying that

limn→∞Xt
2

a.s.
= 0, which completes the proof of (16).



B. Step 4: We show a), b), c), and d)
of Theorem 1 conditioning on Ft+1,t =
{b0, . . . ,bt,m0, . . . ,mt,h1, . . . ,ht,q0, . . . ,qt,x0,w}.

The proof of Step 4 is similar to the proof of Step 3. Thus,
we only present the features that are unique in Step 4.

a) Similar to Step 3a), using Proposition 3 to characterize
A|Ft+1,t and following the same procedure as in [27, Lemma
1a], the ht+1|Ft+1,t

is

ht+1|Ft+1,t

d
=

t−1∑
j=0

ζjh
j+1 + Ã∗mt

⊥ −PQt+1Ã
∗mt

⊥ +Qt
−→o t(1).

(46)
By Proposition 7 in Appendix F, limN→∞ PQt+1

Ã∗mt
⊥

a.s.
=

0N . Similar to Step 3a), we verify that limN→∞ Qt
−→o t(1)

a.s.
=

0N by characterizing (i) the expectation of the empirical
distribution ̂Qt

−→o t(1) is bounded as limN→∞ |⟨Qt
−→o t(1)⟩| ≤

limN→∞ |o(1)|
∑t−1

j=0
1
N

∑N
i=1 |q

j
i |

a.s.
= 0 and (ii) the empir-

ical variance of ̂Qt
−→o t(1) is bounded an converges to

limN→∞⟨Qt
−→o t(1)⟩2 ≤ limN→∞[o(1)]2t

∑t−1
j=0⟨q

j ,qj⟩ a.s.
= 0.

Therefore, using limN→∞ Qt
−→o t(1)

a.s.
= 0N , we get

ht+1|Ft+1,t

d
=⇒

t−1∑
j=0

ζjh
j+1 + Ã∗mt

⊥, (47)

which completes the proof of (11).

b) Using (16) for ϕb(bti, wi) = |gt(bti, wi)|2+2α, we get
limn→∞

1
n

∑n
i=1 |mt

i|2+2α a.s.
= E[|gt(σtZ̃t,W )|2+2α] < ∞.

Because
∑n

i=1 |mt
⊥i|2+2α <

∑n
i=1 |mt

i|2+2α, the following
holds lim supn→∞

∑n
i=1 |mt

⊥i|2+2α < ∞, which concludes
(13).

c) For t1 < t and t2 = t, we have limN→∞⟨ht1+1,ht+1⟩ d
=

limN→∞
∑t−1

j=0 ζj⟨h
t1+1,hj⟩ + limN→∞⟨ht1+1, Ã∗mt

⊥⟩ due to
(47), resulting in

lim
N→∞

⟨ht1+1,ht+1⟩ a.s.
=

t−1∑
j=0

ζj lim
n→∞

⟨mt1 ,mj⟩+ lim
N→∞

mt∗
⊥ Ãht1+1

N
,

(48)
where (48) is by the induction hypothesis (15). Note that
mt∗

⊥
∥mt

⊥∥2
Ã ht1+1

∥ht1+1∥2

d
= Z√

n
due to Proposition 6. The second

term in (48) is represented as

lim
N→∞

mt∗
⊥ Ãht1+1

N

d
= lim

N→∞

∥mt
⊥∥2√
n

∥ht1+1∥2√
N

√
n√
N

Z√
n
,

=
√
ρ lim

N→∞

√
⟨mt

⊥,m
t
⊥⟩⟨ht1+1,ht1+1⟩ Z√

n

a.s.
= 0, (49)

Substituting (49) into (48) yields

lim
N→∞

⟨ht1+1,ht+1⟩ = lim
n→∞

⟨mt1 ,

t−1∑
j=0

ζjm
j⟩ = lim

n→∞
⟨mt1 ,mt

||⟩,

= lim
n→∞

⟨mt1 ,mt
||⟩+ lim

n→∞
⟨mt1 ,mt

⊥⟩ = lim
n→∞

⟨mt1 ,mt⟩,

concluding (15) when t1 < t and t2 = t.

For t1 = t2 = t, by (47),

lim
N→∞

⟨ht+1,ht+1⟩ d
=

t−1∑
i,j=0

ζiζj lim
N→∞

⟨hi+1,hj+1⟩

+ 2

t−1∑
i=0

ζi lim
N→∞

⟨hi+1, Ã∗mt
⊥⟩+ lim

N→∞
⟨Ã∗mt

⊥, Ã
∗mt

⊥⟩. (50)

Then, by (49), the following holds

lim
N→∞

⟨ht+1,ht+1⟩ a.s.
=

t−1∑
i,j=0

ζiζj lim
N→∞

⟨hi+1,hj+1⟩+

lim
N→∞

⟨Ã∗mt
⊥, Ã

∗mt
⊥⟩. (51)

By Proposition 5, the empirical distribution of Ã∗mt
⊥ con-

verges to ̂̃
A∗mt

⊥
d
=⇒ N (0, limn→∞⟨mt

⊥,m
t
⊥⟩). Hence, the

second moment of ̂̃
A∗mt

⊥ converges to

lim
N→∞

⟨Ã∗mt
⊥, Ã

∗mt
⊥⟩

a.s.
= lim

n→∞
⟨mt

⊥,m
t
⊥⟩. (52)

Substituting (52) into (51) leads to limN→∞⟨ht+1,ht+1⟩ a.s.
=∑t−1

i,j=0 ζiζj limN→∞⟨hi+1,hj+1⟩+ limn→∞⟨mt
⊥,m

t
⊥⟩, im-

plying

lim
N→∞

⟨ht+1,ht+1⟩ a.s.
=

t−1∑
i,j=0

ζiζj lim
n→∞

⟨mi,mj⟩+ lim
n→∞

⟨mt
⊥,m

t
⊥⟩,

= lim
n→∞

⟨mt
||,m

t
||⟩+ lim

n→∞
⟨mt

⊥,m
t
⊥⟩ = lim

n→∞
⟨mt,mt⟩.

Therefore, (15) also holds for t1 = t2 = t, which completes
the proof.

d) Defining limn→∞⟨mt
⊥,m

t
⊥⟩

a.s.
= Γ2

t , we can write

̂̃
A∗mt

⊥
d
=⇒ N (0,Γ2

t ). (53)

Using (53) and (47), the following convergence holds

ht+1
i |Ft+1,t

d
=⇒

t−1∑
j=0

ζjh
j+1
i + ΓtZ, (54)

where Z ∼ N (0, 1). Similar to Step 3d), we can write,
using (54), vt

i
d
=⇒ ṽt

i , where vt
i = (h1i , .., h

t+1
i , x0i) and

ṽt
i = (h1i , . . . , h

t
i,
∑t−1

j=0 ζjh
j+1
i + ΓtZ, x0i). Hence, to prove

(17) we first claim that
∣∣∣ limN→∞

1
N

∑N
i=1 ϕh(ṽ

t
i) −

E
[
ϕh(τ0Z0, . . . , τtZt, X0)

]∣∣∣ a.s.
= 0. Similar to

Step 2d), using the triangular inequality, we verify
that limN→∞ Y t

1
a.s.
= 0 and limN→∞ Y t

2
a.s.
= 0,

where Y t
1 =

∣∣∣ 1
N

∑N
i=1

(
ϕh(ṽ

t
i) − ϕ̃h(v

t−1
i )]

)∣∣∣ and

Y t
2 =

∣∣∣ 1
N

∑N
i=1 ϕ̃h(v

t−1
i )−E

[
ϕh(τ0Z0, . . . , τtZt, X0)

]∣∣∣, and

ϕ̃h(v
t−1
i ) = EZ [ϕh(ṽ

t
i)], ∀i.

First, showing limN→∞ Y t
1

a.s.
= 0 is of interest. By (5),

|ϕh(ṽt
i)| ≤ dt1 exp

(
dt2

(∑t−1
j=0 |h

j+1
i |λ +

∣∣∣∑t−1
j=0 ζjh

j+1
i +

ΓtZi

∣∣∣λ + |x0i|λ
))

, where dt1 > 0, dt2 > 0, and 1 ≤ λ < 2 are
constants. Using the inequality ∥x∥λ1 ≤ (t + 1)λ−1∥x∥λλ for



x ∈ R(t+1)×1, we get |ϕh(ṽt
i)| ≤ dt1 exp

(
dt2

(∑t−1
j=0(1+(t+

1)λ−1|ζj |λ)|hj+1
i |λ+(t+1)λ−1|Γt|λ|Zi|λ+ |x0i|λ

))
. Hence,

EZ

[
|ϕb(ṽt

i)|2+κ
]

≤ dt5 exp
[
dt4

(∑t−1
j=0 |h

j+1
i |λ + |x0i|λ

)]
,

where 0 < κ < 1, dt4 = dt2(2 + κ)max
{
1 + (t +

1)λ−1|α0|λ, . . . , 1 + (t + 1)λ−1|αt−1|λ, (t + 1)λ−1|Γt|λ
}

,

and dt5 = (dt1)
2+κEZ

[
exp(dt4|Zi|λ)

]
are constants. Define

Y t
N,i = ϕh(ṽ

t
i) − EZ [ϕh(ṽ

t
i)], ∀i. To prove the conver-

gence limn→∞ Y t
1

a.s.
= 0, we will show that {Y t

N,i}Ni=1 sat-
isfy the condition in Lemma 3 in Appendix F. Indeed, the
EZ [|Y t

N,i|2+κ] is upper bounded as follows.

EZ [|Y t
N,i|2+κ] ≤ 21+κ

(
EZ [|ϕh(ṽ

t
i)|2+κ] + |EZ [ϕh(ṽ

t
i)]|2+κ

)
,

≤ 22+κEZ [|ϕh(ṽ
t
i)|2+κ]

≤ dt6 exp

(
dt4

( t−1∑
j=0

|ζjhj+1
i |λ + |x0i|λ

))
,

≜ ψh(v
t−1
i ). (55a)

Then, ψh(v
t−1
i ) is a controlled function. From (55a), we get,

for N is sufficiently large,

1

N

n∑
i=1

EZ [|Y t
N,i|2+κ] ≤ 1

N

n∑
i=1

ψh(v
t−1
i ),

a.s.
= E[ψh(τ0Z0, . . . , τt−1Zt−1, X0)],

< cNκ/2, (56a)

where c is a positive constant and (56a) holds because
E[ψb(σ0Z̃0, . . . , σt−1Z̃t−1,W )] = dt7 < ∞ and there exists
Nt, a positive constant, such that dt7 < cNκ/2 for N > Nt.
Using Lemma 3 in Appendix F, limN→∞

1
N

∑N
i=1 Y

t
N,i

a.s.
= 0,

implying limN→∞ Y t
1

a.s.
= 0.

We are now ready to verify the convergence
limN→∞ Y t

2
a.s.
= 0. Applying the induction hypothesis

(17) for ϕ̃b(vt−1
i ) gives

lim
N→∞

1

N

N∑
i=1

ϕ̃h(v
t−1
i )

a.s.
= E[ϕ̃h(τ0Z0, . . . , τt−1Zt−1, X0)],

= E
[
EZ [ϕh(τ0Z0, . . . , τt−1Zt−1,

t−1∑
j=0

ζjτjZj + ΓtZ,X0)]

]
,

= E
[
ϕh(τ0Z0, . . . , τt−1Zt−1,

t−1∑
j=0

ζjτjZj + ΓtZ,X0)

]
.

Therefore, showing limN→∞ Y t
2

a.s.
= 0 is equivalent to proving∑t−1

j=0 ζjτjZj + ΓtZ = τtZt, where Zt ∼ N (0, 1) and τt

is defined in (7). Similar to the proof of limn→∞Xt
2

a.s.
=

0 in Step 3d), setting ϕh(v
t
i) = (hti)

2, i.e., ϕh(ṽt
i) =(∑t−1

j=0 ζjh
j+1
i + ΓtZ

)2

, we get

lim
N→∞

⟨ht+1,ht+1⟩ = lim
N→∞

1

N

N∑
i=1

ϕh(v
t
i)

d
= lim

N→∞

1

N

N∑
i=1

ϕh(ṽ
t
i)

a.s.
= E

[( t−1∑
j=0

ζjτjZj + ΓtZ

)2]
.

Using (15), we get limN→∞⟨ht+1,ht+1⟩ a.s.
=

limn→∞⟨mt,mt⟩ = τ2t , where the last equality holds
by the induction hypothesis (16) for ϕb(ut

i) = g2t (b
t
i, wi),

resulting in limn→∞⟨mt,mt⟩ a.s.
= E[g2t (σtZ̃t,W )] = τ2t .

Hence, E
[(∑t−1

j=0 ζjτjZj + ΓtZ
)2] a.s.

= τ2t , which implies∑t−1
j=0 ζjτjZj + ΓtZ = τtZt. Thus, it is verified that

limN→∞ Y t
2

a.s.
= 0, which completes the proof of (17).


